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Abstract-The problem of the growth of a bubble in the presence of a magnetic field is examined under 
the assumption that the process is heat transfer controlled. The work reveals the existence of a new 
nondimensional number which physically represents the ratio of the ponderomotive forces over pressure 
forces computed on the basis of length-scale and time related to the coefficient of thermal diffusion, It is 
found that for a spherical magnetic field, growth of the bubble remains parabolic in time but the rate 
of growth is slower. Heat-transfer estimates are also made in the fashion of Forster and Zuber indicating 
that heat transfer in nucleate boiling is reduced in the presence of magnetic fields. In a numerical example, 

this reduction is more substantial for potassium than it is for mercury. 

NOMENCLATURE 

magnetic field intensity; 
coefficient of specific heat at constant 
pressure; 
quantity defined in equation (17); 
quantity defined in equation (17); 
latent heat of vaporization; 
current density; 
Jacob number defined in equation (15); 
generalized Jacob number defined in 
equation (21); 
nondimensional number defined in 
equation (18); 
coefficient of thermal conductivity; 
Nusselt number; 
Prandtl number; 
pressure; 
bubble radius; 
nondimensional bubble radius defined in 
equation (16); 
Reynolds number: 
radial coordinate; 
tem~rature; 
liquid phase velocity; 
vapor-liquid interface velocity. 

Greek symbols 

a, coefficient of thermal diffusivity; 

ii+ constant defined in equation (12); 

AP* pressure difference defined in equation (18); 
AT, temperature difference defined in equation 

(14); 
s, density ratio defined in equation (3); 
v, coefficient of kinematic viscosity; 

P% mass density; 
0, coefficient of surface tension; 

de. electrical conductivity; 
z, time; 
r*, nondimensional time defined in equation (16). 

*Professor and Head, School of Nuclear Engineering. 

Subscripts 

0, indicates quantity computed at zero 
magnetic field: 

sat, indicates quantity computed at saturation 
point ; 

m, indicates quantity computed far away from 
the bubble. 

Dots on top of symbols indicate differentiation with 
respect to time. 

INTRODUCTION 

IT IS well known that many aspects of boiling are 
difficult to understand. Indeed there are good reasons 
for more research to be conducted on boiling for the 
ordinary non-magnetic case before one gets into the 
complications of the presence of a magnetic field. The 
motivation for such a challenging excursion, how- 
ever, comes from technical applications that demand 
some rudimentary analysis in order to design tech- 
nologically important devices. Two of them can be 
mentioned. MHD power generation loops using two- 
phase flow liquid metals and second fusion reactor 
blanket designs. In this last case it has been proposed 
that the plasma heated liquid lithium be used to boil 
potassium, the vapor of which in turn could be utilized 
in a power producing topping cycle [I]. 

Some experimental attempts have been made [2-51 
to investigate the heat transfer in nucleate boiling in 
the presence of a magnetic field, but at best they are 
contradictory and inconclusive. No theoretical attempt 
seems to have been made to discuss aspects of this 
question. 

In this paper a simplified model of the bubble growth 
in the presence of a magnetic field will be developed 
aiming at getting an insight into the physics of the 
problem rather than attempting an exact description 
of the phenomenon. With the help of the conclusions 
reached from this first part of the investigation, an 
attempt is then made to estimate heat transfer rates 
in the simple case of nucleate boiling. 
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HYDRAULIC ASPECTS addition, since at all times the velocity is perpendicular 
First we must set the geometry of the magnetic field to the field one can deduce by using Ohm’s Law that 

in relation to the bubble. From a practical point of the ponderomotive force per unit volume acting in the 
view it would be anpronriate to set it constant and radial direction is equal to 
uniform at a given angle with the horizon. Clearly such 
a configuration would lead, during the bubble’s growth, 

(J xB)t = -(cr,uB).B = -rr,u~z. (4) 

to a non-spherical geometry since growth along the In the above cre is the electrical conductivity and u is 
magnetic field would be unrestrained. For a first the velocity of the liquid phase in the radial direction. 
attempt at understanding the physics of the problem, If I/ is the velocity of the interface of the vapor and 
this geometry provides complications that only exten- liquid phase, then simple conservation of mass relates 
sive numerical work can untangle. instead, the assump- u and V as follows 
tion will be made that the magnetic field is constant 
and spherical. always remaining normal to the radial 
direction of growth. This guarantees that spherical 
symmetry is not lost, however later an account will be 
made of the fact that this configuration provides a 
stronger interaction. 

Let us now see how the magnetic field is accounted 
for in the equations of conservation. It is well estab- 
lished that during the initial formation of a bubble a 
critical size will be reached at the moment when the 
difference in the pressure of the vapor inside and the 
liquid outside is balanced by the surface forces. In 
mathematical language. 

20 
PI -Pz = F-’ 

0 

(1) 

A moment later when the bubble becomes larger 
than R. the pressure difference will no longer be 
balanced by surface tension forces but all other forces 
must be accounted for, such as inertia. viscous and, in 
our case, the ponderomotive force. 

The momentum equation has been developed by 
numerous authors, such as for instance by Striven in [6] 
and is presented below with the addition of the 
ponderomotive force. 

i 

n 

- (J x B),dr. (2) 
*R 

In the above R is the bubble radius, (r the surface 
tension, p the mass density, 1’ the kinematic viscosity 
and the subscripts I! and I refer to the vapor and liquid 
phases. The quantity E is defined as follows 

E _ Or-PC 

Pi 
(3) 

For the case of some liquids, but in particular for 
liquid metals. some simplifications to the Rayleigh 
equation are possible. For our purposes the viscous 
forces can be neglected. In addition the surface tension 
forces, apart from their initial role, do not contribute 
very much in the subsequent growth. 

It remains now to examine the ponderomotive force. 
We shall assume that the magnetic Reynolds number 
is very small. Because of the assumed geometry of the 
magnetic field, the induced current will close on itself 
in the liquid phase and hence in the frame of reference 
of the laboratory there will be no electric field. In 

plur’ = V(pr-pc)R2 = (pr-pa)RR2. (51 

The ponderomotive force per unit mass from Ohm’s 
Law is then equal to 

0, B% a,B2 ERRS 
-~-- = -~ .___._^_ 

Pz PI r2 ' 

We now integrate this force from r = R to r = x 
to obtain 

With the above approximations the fundamental equa- 
tion 12) becomes with E z 1 

po-pl = (R~+:k2)p~+a,B2R~. (7) 

We now need to discuss the role of the inertia terms. 
It is well established that for liquid metals, where the 
thermal conductivity is high, the inertia terms are very 
import~t during the period of initial growth. It is later 
on. as the bubble has grown considerably. that the 
growth is heat transfer controlled. On the other hand, 
inclusion of the inertia terms in the equations leads to 
computational complications and it will be best to 
discard them at this time. It should be clear, however, 
that for high magnetic fields, these inertia forces will 
be very small compared to the other forces, More 
discussion of this point follows later in the text. From 
all of the above, the equation of momentum conser- 
vation is approximated as follows : 

pc-pz = cr,B*fiR. (8) 

Equation(8)ne~s now to be coupled with the principle 
of energy conservation. In words, this principle states 
that the energy conducted into the bubble is equal to 
the change of the enthalpy necessary for the transition 
from the liquid to the vapor phase. If the latent heat 
of vaporization is if, the above statement can be 
written as follows: 

AT . 
k - z i,,p,R 

A r 

As it is customary in similar problems [7], the length 
Ar is handled and set to be proportional to (ctz)“. 
We have 

*T 
a.! 

k -- = ifspv R 
(CtT)f 

or: 

(101 
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In the above, k is the coefficient of thermal conductivity, 
d! the thermal diffusivity, 7 stands for time, and T, is 
the temperature far away from the bubble. 

We now invoke the linearized Clausius-Clapeyron 
expression that relates pressure to temperature differ- 
ences in terms of the slope B in an appropriate thermo- 
dynamic diagram. In mathematical form this state- 
ment is 

P”--PI-- vG-T,,) = * (T, - T,,,). (11) 
Sal 

Substituting equation (1 If in equation (8) we have 

i’(T,- T,,,) = a,B2Rd. (12) 

Parenthetically, we will assume that y remains constant 
during the growth time. See the recent paper by 
Theofanous and Pate1 [S] for an interesting discussion 
of this approximation. 

We can now eliminate K from equations (10) and 
(12) and solve for R to find : 

where 

d= y(AT1 
(13) 

(AT) = T,,-- T,,,. (14) 
We now introduce non-dimensional parameters before 
seeking a solution of the fundamental equation (13). 
First we invoke the definition of the well-known non- 
dimensional Jacob number. 

Ja = p&AT) -. 
Pts if@ 

(15) 

We nondimensionalize length and time as follows [S] 
R 

R*=:__..- __ 
E2jF’ 7* - (E&Z 

(16) 

where 
AT p4.- 
Pr ’ 

E = 2~8. Ja. (17 

We also introduce a new non-dimensional magneto- 
fluid-mechanic number from the following relation 

u,B% u,B2c! 0, B2UT,,, 
K=___=__- . 

Y@T) Ap ~,P,AT 
(18) 

If we use all of the above, equation (13) in non- 
dimensional form becomes 

1;1*=: 
1 

4KJaZR* +z(z*)* * 
w 

Upon integration we find that 
R* = Ja*(t*)* (20) 

where Ja* is a modified Jacob number given from the 
relation 

Ja* -_ _---_+ ,,‘C I+ 8KJa2) 
4KJa2 ’ (21) 

Note that when K = 0, Ja* = 1. 
Also in the limit of very large K we have 

Ja* = l/Ja(2K)~. (22) 

It is interesting to see from equation (20) that even 
in the presence of the magnetic field we still get the 
parabolic growth dependence. This is partly due to our 
assumption of a spherical magnetic field. We should 
also note the discovery of the new non-dimensional 

number K defined in equation (18). Physically K 
represents the ratio of the ponderomotive force to the 
pressure forces, computed on the basis of scale and 
time related to the thermal diffusion coefficient. Equa- 
tion (21) is now plotted in Fig. 1, where one can see 
the extent to which the ponderomotive force retards 
the rate ofgrowth of the bubble. 

to- 

Jd 

cl2 - 

I I I I I 
0 I 2 3 4 5 

KJa* 

FIG. 1. Variation of generalized Jacob number with KJd. 

It should be noted that it is the parameter KJa2 
that is a truemeasure ofthe magnetic interaction. Using 
the definitions of K and Ja we find that 

KJa= = @(AT) ~~ . 
i i 

For a given fluid this parameter is proportional to 
the square of the magnetic field and the superheat AT. 

Some recent work to be reported in another paper 
with Lorry Wagner [ 101 takes into account the inertia 
terms. Results show that for zero magnetic field, the 
inertia controlled solution falls into the heat-transfer 
controlled case at about t* = 10’. The equivalent 
values for the case of KJa2 = 10 and 50 is t* = 1 and 
0.1 correspondingly. 

BEAT-TRANSFER ASPECTS 

It has yet to be established what is the connection 
between the growth characteristics of a bubble and 
boiling. Even so, Forster and Zuber [9] have suggested 
a heat-transfer correlation based on such a connection 
and although this relation has been disputed it is also 
true that it has been found capable of correlating 
some of the available experimental data. The logic of 
this correlation is simple. Since in heat transfer prob- 
lems the Nusselt number depends on Reynolds and 
Prandtl numbers, we need to have, apart from physical 
properties, a scale for length and a scale for velocity 
for proper definition of the Reynolds number. Forster 
and Zuber chose as a scale the instantaneous value of 
the radius of the bubble and as a velocity the rate of 
its growth. Since in the heat-transfer controlled region, 
the radius of the bubble grows with the square root of 
time, it is obvious that the Reynolds number remains 
constant with time. This provides the basis for a time 
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independent heat-transfer correlation. In the case of 
the presence of a magnetic field the parabolic law still 
holds and hence we can indeed produce a time in- 
dependent Reynolds number via the parameter X. In 
terms of the Jacob and Prandtl numbers, Forster and 
Zuber define the Reynolds number from the above 
argument as follows: * 

(23) 

In the non-magnetic case they also suggest 

(Nu)~ = 0.0015(Re)$.62Pr0.33. (24) 

In our case we need only to modify the appropriate 
Reynolds number. If we compute the ratio of the 
Nusselt number with the magnetic~eld over the Nusselt 
number without the presence of a magnetic field we 
obtain the following expression in terms of the general- 
ized Jacob number. 

0.62 
= [Ja*]‘.2~. (25) 

In Fig. 2 we can see how this ratio depends on the 
parameter KJa’. This provides a universal description 
of what happens, heat-transfer wise, for all Jacob and 
K numbers. On the other hand, in Figs. 3 and 4 the 
dependence of Nu is shown for mercury and potassium 
for different degrees of superheat. 

Before enumerating the conclusions as they emerge 
from the above analysis, it should be stated that the 
heat-transfer trends as presented here perhaps approxi- 
mate the case of a horizontal magnetic field. In the 
case of a vertical magnetic field, it is possible that 
even though the growth of the bubble will be restricted 
in the horizontal direction, the eventual rising of the 
bubbles due to the buoyant forces will be performed 
along the smooth and orderly vertical trajectories 
imposed by the magnetic field, thus enhancing the 
heat transfer to the bulk of the fluid. On the contrary, 
when the magnetic field is horizontal, buoyancy will be 
restrained, and more bubbles will remain longer in their 
nucleation sites, with the possibility of a more direct 
transition from nucleate to film boiling in this case. 

Finally, the following trends evolve from the analysis 
that lead us to equation (25): 

1. The higher the superheat the more effective is the 
magnetic field in reducing heat transfer. This is 
evident from the fact that higher superheats are 
capable of sustaining faster bubble growths. 
Analytically, the interaction parameter KJa2 is 
seen to be proportional to the superheat (AT). 

2. Because of the nature of physical constants the 
magnetic field is more effective in reducing heat 
transfer in pot~sium than it is in mercury. This 
is due primarily to the higher thermal di~usivity 
associated with potassium, hence a higher inter- 
action parameter KJa’. 

3. As it is the case with so many problems of similar 
nature, the reduction of heat transfer is dramatic 
at relatively low magnetic fields but at higher 
magnetic fields the rate of reduction is much less. 

The present simplified theory predicts for instance, 
that in a field of 1 T, heat transfer for a superheat of 

N* 

N% 

I ! I i I 
0 / 2 3 4 5 6 

KJo’ 

FIG. 2. Nusselt number ratio vs KJaZ. 

,” rp 
= * 0.5-- AT 

5 'C 

1 I I I I I I 
0 I 2 3 4 5 6 

6, TE.lO 

FIG. 3. Nusselt number ratio for mercury. 

AT 
5 *c 
IO 'C 
20 -Y 

1 I I I I 30 *c 

0 I 2 3 4 5 6 

B, T&O 

FIG. 4. Nusselt number ratio for potassium. 

10°C is decreased by 5 and 20% for mercury and 
potassium correspondingly. It should be noted on the 
other hand, that this corresponds to a spherical 
magnetic field. If one computes an equivalent magnetic 
field based on the horizontal projection of the spherical 
one, one can find that: 

B equlvalenr - 1 B = 1.13B. - (n)f (26) 
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In other words, the above decrease in heat transfer as time passes and the bubble increases in size the 
will probably be realized at about 1.13 T rather than phenomenon is “heat transfer controlled” and the in- 
at IT. Equation (26) is of course based on a very ertia forces do not enter into the discussion. 
rough way of accounting for the fact that in reality the Finally the assumption of a constant spherical mag- 
field will be uniform rather than spherical. netic field will need to be reviewed for a more detailed 

and accurate description of the bubble growth. 
CONCLUSIONS 

The paper consists of an order of magnitude 
Ackn~~ie~geme~ts-The author wishes to acknowledge a 
number of fruitful discussions he had with his colleagues, 

phenomenolog~cal attempt to describe the magnetic Drs. T. Theofanous. and A. Sesonske. Also, similar dis- 

field effect on nucleate boiling. Results have been cussions with his students, Lorry Wagner and Michael 

obtained for the growth of the bubble and heat transfer Andelman to whom the computation of the effective mag- 

rates. A number of approximations have been made 
netic fieid is due. 

the most limiting ones being the absence of the inertia 
Partial support of the work by NSF Grant ENG-7505561. 
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forces and the one related to the geometry of the field. 
On the other hand, since the present findings are com- 
pared with the nonmagnetic ones, they probably pro- 1. 
vide a guide as to what trends to expect, in conducting 
an appropriate experiment. The work also delineates 
the non-dimensional parameters in terms of which the 2, 
laboratory data can be presented with some pertinent 
reflection of the physics of the problem. A new non- 
dimensional parameter was discovered namely ? 
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CROISSANCE DES BULLES EN PRESENCE D’LJN CHAMP MAGNETIQUE 

R&sum&-Le problbme de la croissance d’une bulle en prksence d’un champ magnCtique est examink 
selon l’hypothise d’un processus contrtilC par le transfert thermique. Les prksents travaux font apparaitre 
l’existence d’un nouveau nombre sans dimension qui reprtsente, du point de vue physique, le rapport 
des forces de pesanteur aux forces de pression calculC sur la base d’une Cchelle de longueur et d’un temps 
relatifs au coefficient de diffusion thermique. On trouve que dans le cas d’un champ magnktique sphkrique, 
la croissance de la bulle est encore parabolique dans le temps mais le taux de croissance est plus faible. 
Des estimations du transfert thermique faites suivant la mtthode de Forster et Zuber indiquent que le 
transfer1 de chaleur en kbullition nucl&Ce se trouve rCduit en prbsence de champs magnt?tiques. Dans un 
exemple numerique, on montre que cette rCduction est plus importante pour le potassium que pour 

le mercure. 

BLASENWACHSTUM IN ANWESENHEIT EINES MAGNETFELDES 

Zu~mm~fassung-Do Problem des Blasenwachstums in Anwesenheit eines Magnetfeldes wird unter 
der Annahme untersucht, da13 der Vorgang durch den W~rme~~rgang bestimmt wird. Die Arbeit zeigt, 
das Vorhandensein einer neuen dimensionslosen GrijOe, welche physikalisch das Verhlltnis der 
ponderomotorischen Krgfte zu den Druckkrsten darstellt; dieses Verhiiltnis wird unter Verwendung des 
Temperaturleitkoeffizienten in Abhiingigkeit von Ort und Zeit berechnet. Es zeigte sich, da13 das 



Blasenwachstum in Anwesenheit ekes sphkischen Magnetfeldes weiterhin parabolisch i_iber der Zeit 
verkuft, die Wachstumsrate jedoch geringer ist. Der Wirmeiibergang beim Blasensieden wird durch die 
Anwesenheit magnet&her Felder vermindert, wie eine AbschCtzung nach der Methode von Forster und 
Zuber ergab. Anhand eines numerischen Beispieles wird gezeigt, daR bei Kalium eine stLrkere Verringerung 

eintritt als bei Quecksilber. 

POCT flY3bIPX B ~P~~YT~T3~~ ~ArH~THOrO KlOJIif 

AIiHOT7XUHS - ~CC~eAyeTCK~a~apOCTaRy~bXpKB~p~CyTCTB~~MarHWTHOrO~O~SI~p~~O~y~e~rtu, 

VT0 OIIpeileIIRKSI&HMIIpO4eCCOM SU3JE?eTCR IlepeHOC Tel'LRa. B XOAeHCCIieAOBaHHff BCKPblTO Hamwe 
HOBOrO 6e3pa3MepHOrO 'fSiWa,KOTOpOe @%3WieCKH OnHCblBaeT OTHOUleH&ie ROHAepOMOTOpHblX CHJI 

K CfiJZiM ,&lBJIeHEiK, paCC'iHTaHHblX II0 UJKaJIe &WiHbl H BpeMeHkf, OTHeCeHHblX K K03(t)&,,,‘,eHTy 

TepMOJ@@y3HH. HaBAeHo, YTO AJVl C@IepHWCKOrO MarHWTHOrO FlOflll POCT Ily3blPR 80 B,,eMeHB 

npOHCXOAKT II0 3BKOHy napa6onq HO CKOpOCTb pOCTa 3aMeAJUleTCK. OlleHKa TeNlOO6MeHa npOBO- 

AM,U%!bI,O~opcTepyn3y6epy,cor~acHo KOTOpbIMUHTeHCUBHOCTbTeIlJl006MeHal7pll ,,y3blPbKOBOM 

KEl~eHUUyMeHbllIaeTCRnpaHana~IiaMarHUTHblXnOneii.B~HCneHHOM OTHOUleHMki 3TOyMeHbUleHWe 

6onee CyLWCTBeHHO AJIll KaJIRII,YeM AJILnn PTYTM. 


